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Abstract: We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy
images for a malaria diagnosis on both image and patient-level. Our framework detects whether
a patient is infected, and in case of a malarial infection, reports whether the patient is infected by
Plasmodium falciparum or Plasmodium vivax. PlasmodiumVF-Net first detects candidates for Plasmod-
ium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false
positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species
based on a score obtained from the number of detected patches and their aggregated probabilities
for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore
reported less often in the literature, due to the small size of detected parasites, the similarity to
staining artifacts, the similarity of species in different development stages, and illumination or color
variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with
about 6000 images, which we make publicly available together with this manuscript. Our framework
achieves an overall accuracy above 90% on image and patient-level.

Keywords: malaria; computer-aided diagnosis; biomedical image analysis; deep learning; ResNet50;
Mask R-CNN; Plasmodium parasite; Plasmodium falciparum; Plasmodium vivax

1. Introduction

Malaria is a contagious and potentially deadly disease attributable to Plasmodium
(P.) parasites carried and transmitted to humans through mosquito bites. According to
the World Health Organization (WHO) [1], there were approximately 229 million cases
in 2019, with more than 400,000 worldwide death cases. Most of those cases are in the
African region, and children, pregnant women, patients with HIV/AIDS, and travelers are
the most at-risk groups. The symptoms appear within 15 days after infection, and if not
discovered and treated within 24 h, severe illness and serious consequences may occur,
including death.

The microscope is the gold standard for a malaria diagnosis [2]. Microscopy is used
to identify the infection after a microscopist places a drop of blood on a glass slide, stains
it, and checks it for parasites. Malaria primarily spreads in poor African countries that
lack equipment, materials, and individuals with sufficient expertise to report a reliable
diagnosis [1]. Malaria symptoms overlap with those of other diseases with similar symp-
toms, which can lead to increased antibiotic and drug resistance when treatments are
based on the symptoms alone [3,4]. On the other hand, it is extremely dangerous and
may be fatal to leave malaria untreated if a person is actually infected. Automated algo-
rithms using image processing, computer vision, and artificial intelligence are continuously
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evolving [5–7] and can help to alleviate this problem by providing more reliable and stan-
dardized decisions, especially in resource-poor regions. Moreover, the algorithms could
benefit researchers, allowing them to quickly evaluate their experiments without expensive
lab equipment.

For malaria screening, computer scientists are developing algorithms for thin and
thick smears [2,8–12]. Blood smears are used to determine whether a person is infected,
report parasite density, and identify parasite species [13]. Thin smears are normally used
for species identification and thick smears are often used for a first decision as to whether
a patient has malaria because thin smears may not be adequate to identify parasites in
individuals with low parasitemia, while thick blood smears are often used to inspect a
larger volume of blood [8,14–16]. We think that it would make diagnostics more efficient if
malaria species could be automatically detected on thick smears as well.

Our proposed framework analyzes thick smear images for malaria diagnosis. De-
tecting and classifying parasites in thick blood smears is a challenging process. Parasites
are noise-like structures and extremely small in high-resolution images that suffer from
staining artifacts and illumination variations. In our dataset, the parasite radius can only
be 2 pixels in an image of 3k by 4k pixel resolution.

Reporting a patient-level decision is even more challenging because any detection
algorithm likely produces false positives in an image when the patient data consists of
several images. Our proposed framework tackles those challenges and adopts specific
criteria to report the patient-level decision.

We structured our paper as follows: Section 1 introduces the problem, presents a
literature review for algorithms that process thick smear images in malaria microscopy, and
discusses our contribution. Section 2 describes the datasets that we use in our experiments
and introduces the methodology. Section 3 presents the experimental network settings and
discusses the quantitative performance. Finally, Section 4 concludes the paper with the
main result.

1.1. Literature Review

Malaria is caused by Plasmodium parasites. There are five known Plasmodium
parasite species causing malaria: P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi.
According to the WHO [1], P. falciparum and P. vivax are the most deadly parasites and
pose the greatest risk. Most of the computational analysis algorithms presented in the
literature perform a patch-level evaluation for identifying P. falciparum parasites. To the
best of our knowledge, our work is the first to identify patients with P. falciparum and
P.vivax parasites in a large dataset of thick smear images and that provides an image and
patient-level decision on the infection. The literature review is ordered from older to more
recent papers found in the literature.

In 2011, Kaewkamnerd et al. [17] analyzed the V-value histogram of the hue, sat-
uration, and value (HSV) image and extracted white blood cells (WBCs) and parasites
using adaptive thresholding. They identified two species (P. falciparum vs. P. vivax) and
classified them based on size. This approach is not reliable because the size is not a robust
distinguishing feature and they only processed 20 images with 60% overall accuracy.

In 2011, Elter et al. [18] detected Plasmodium parasites by looking for objects contain-
ing chromatin and filtered out the non-parasite objects based on shape and intensity. Then,
they used a support vector machine (SVM) with a set of features to identify parasites. The
algorithm is applied on 256 images and only to P. falciparum with a patch-level evaluation.

In 2013, Purnama et al. [19] developed a three-stage algorithm beginning with pre-
processing, feature extraction based on color space histogram, and genetic programming
for classification. They ran their algorithm on 180 image patches to classify different
Plasmodium species. There is no detection step, and the evaluation is on patch level.

In 2014, Quinn et al. [20] collected overlapping patches and considered a patch as
positive if it had a parasite in the center. They collected features derived from connected
components and from calculating moments of the patches thresholded at multiple levels.
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Then, they used a randomized trees classifier to classify the patches. They ran the algo-
rithms on 133 patients and 2703 images. The algorithm only evaluated on patch level, and
is only applied to a dataset of infected patients. As a result, the authors did not test it on
uninfected patients to check if it recognized them as uninfected. Moreover, the algorithm
could not recognize different species; it only recognized Plasmodium parasites in general.

In 2015, Chakrabortya et al. [21] detected parasites based on an algorithm consisting
of several modules for grayscale conversion, binarization, morphological operation, and
color-based discrimination. They only used 75 images for P. vivax and the algorithm was
not tested on images with P. falciparum parasites or on uninfected images. Moreover, the
evaluation is on patch level, not on patient level.

In 2015, Delahunt et al. [22] proposed an algorithm that finds candidate objects using
a segmentation module and traditional feature engineering with convolutional neural
networks. The engineered features include morphological, color, texture, and rectangular
Haar features. They trained and tested their algorithm using P. falciparum and negative
samples. They tested the algorithm on P.vivax patients; however, in their discussion section,
they state that their results apply only to P. falciparum.

In 2016, Rosado et al. [23] developed an algorithm to detect P. falciparum trophozoites
and white blood cells in Giemsa-stained thick blood smears. They used an SVM classifier
and a total of 314 image features extracted for each candidate. The evaluation is only on
patch level; they used 6 patients with 194 images, and only addressed P. falciparum parasites
and WBCs.

In 2017, Dave et al. [24] extracted parasites from thin and thick blood smear images;
they discriminated between the two based on histogram type (bimodal vs. unimodal).
After recognizing the image type, separate pipeline steps were designed for each type
based on color space conversions, adaptive thresholding, and connected components. They
processed 30 thin blood smear images, and 87 thick blood smear images, and presented
parasite counting results on patch level.

In 2017, Mehanian et al. [25] provided a multi-module processing pipeline consist-
ing of the following modules: (1) a preprocessing module based on a new sample-level
global white balance method that pools the pixels from all of the fields of view (FoVs)
and computes a global color balance affine transform for each blood sample, (2) an object
detection module based on a novel adaptive nonlinear grayscale intensity image, (3) a fea-
ture extraction module incorporating CNNs and introducing a new gamma-transforming
color augmentation scheme, (4) a CNN classification module, and finally, (5) a dispo-
sition module that computed a patient-level diagnosis and quantification. They stated
that their pipeline is the first that applies CNN models with sufficient data, 1452 images
and 195 patients, and introduced patient-level accuracy. However, they only identified
P. falciparum parasites.

In 2020, Yang et al. [26] used an intensity-based iterative global minimum screening
(IGMS) method for fast and automatic preselection of parasite candidates and a customized
CNN model for classification between parasites and non-parasite patches. The IGMS
worked well for P. falciparum; however, the parameters are optimized to handle only
P. falciparum parasites. They tested the method on 150 P. falciparum patients with 1818 thick
smear images with 84,961 cells. Therefore, the algorithm is applicable only to patients
infected with P. falciparum.

In 2020, Chibuta et al. [27] modified YOLOV3 to handle small object detections. They
applied the network to two datasets with 2703 images from 133 individuals infected by
P. falciparum parasites. The evaluation is done only on patch level.

In 2021, Abdurahman et al. [28] modified YOLOV3 and YOLOV4 to handle small
object detections. They tested their modified network on 1182 images from patients infected
by P. falciparum parasites. They stated that they will handle other species in their future
work. The evaluation was done only on patch level.

In 2021, Horning et al. [29] implemented a fully-automated system, named EasyScan
GO, to detect malaria parasites and identify parasite species. They stated that a successful
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distinction between non-falciparum species using only thick films has not yet been achieved
and the algorithm still depends on thin films for this task. In our framework, however, we
are able to produce patient-level parasite species identification between P. falciparum and
P. vivax based on thick blood smear microscopy images.

1.2. Contribution

The literature lacks a complete framework that can both detect whether a patient is
uninfected or infected and can recognize the parasite species causing an infection. The
methods either detect only one parasite species or classify manually extracted patches of
different Plasmodium species. Most of the authors evaluated their work on patch level
and did not report the performance of their method on patient level. Plasmodium species
differ in size, shape, and morphology; see Figure 1 and Table 1. We assume, realistically,
that we do not know beforehand whether a patient is uninfected or infected. Furthermore,
if infected, we assume that the system has no prior knowledge of whether the patient is
infected by P. falciparum or P. vivax.

(a) (b)

Figure 1. Examples of P. vivax and P. falciparum parasites. We extract those samples using the gold
standard ground truth annotated by an expert reader. We resize the parasites to 44 × 44 for better
visualization and consistency. (a) P. falciparum parasites. (b) P. vivax parasites.

We design the first framework (PlasmodiumVF-Net) that addresses the problem of
detecting and classifying parasites and reporting a patient-level decision for thick smear
microscopy. In this framework, we determine the parasite species based on the number
of detected patches and aggregated probabilities of the predicted patches for all of the
patient images. We utilize three datasets to evaluate our framework: a dataset with
150 patients infected by P. falciparum parasites, a dataset with 150 patients infected by
P. vivax parasites, and a dataset with images from 50 uninfected patients. In total, we will
make 350 patients and 5972 images open source with the publication of this paper. To the
best of our knowledge, this is the first public dataset containing annotated thick smear
images for P. vivax parasites.

2. Materials and Methods
2.1. Data Set

We used three datasets of Giemsa-stained thick blood smears that are photographed
at Chittagong Medical College Hospital, Bangladesh, through the eyepiece of a microscope
with 100× magnification, using a smartphone camera, and manually annotated by an
experienced expert. We collected, de-identified, and archived all of the images and their
annotations at the National Library of Medicine (IRB#12972).
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All images in the datasets are from 350 infected and uninfected patients. The first
dataset is the P. falciparum dataset which we have already published in [26] under this link:
https://data.lhncbc.nlm.nih.gov/public/Malaria/Thick_Smears_150/index.html (last ac-
cessed 26 October 2021). The second dataset is the P. vivax dataset that we publish with
this article under this link : https://data.lhncbc.nlm.nih.gov/public/Malaria/NIH-NLM-
ThickBloodSmearsPV/NIH-NLM-ThickBloodSmearsPV.zip (last accessed 26 October 2021).
Both of the datasets are acquired from infected patients. The third dataset is from uninfected
patients and is also released with this article here: https://data.lhncbc.nlm.nih.gov/public/
Malaria/NIH-NLM-ThickBloodSmearsU/NIH-NLM-ThickBloodSmearsU.zip (last ac-
cessed 26 October 2021). All images are in RGB color with a resolution of 3024 × 4032 pixels.

Dataset statistics: Table 1 lists the main statistical differences between our two datasets
for infected patients. The same number of patients has more images for P. vivax, and more
infected cells for P. falciparum. P. vivax parasites have a larger radius than P. falciparum
parasites. To visualize these numbers, we generate four box plots in Figure 2. The box
plots display the bottom, median, and top edges of the boxes for the 25th, 50th, and 75th
percentiles, respectively. The outliers are plotted as individual points by a red + mark
beyond the whiskers. A data point is considered an outlier if its value is 1.5 times higher
than the interquartile range from both box edges.

Table 1. Comparison of two infected datasets: P. falciparum and P. vivax.

P. vivax P. falciparum

Number of patients 150 150

Number of images 3013 1818

Number of parasites 43,042 84,961

Parasite radius range 6–144 2–96

Average parasite radius 42 22

Number of parasites per image 1–98 1–341

Average number of parasites per image 14 47

Number of images per patient 15–30 3–22

Average number of images per patient 20 12

Number of parasites per patient 24–1345 8–3130

Average number of parasites per patient 287 522

Figure 2a shows the parasite radii for both datasets. For example, there are 560 parasites
with a radius higher than 79.5 (top whisker) for the P. vivax dataset, while for P. falciparum,
there are 1358 parasites with a radius higher than 33 (top whisker) and 108 with a radius
less than 9 (bottom whisker). Figure 2b displays the number of images per patient for both
datasets. P. vivax has a more consistent number of images per patient than P. falciparum.
Figure 2c displays the number of parasites per image, and shows that the P. falciparum
images have a higher parasite density than the P. vivax images. The last subfigure (d) shows
a parasite analysis on patient-level.

Figure 1 shows two sets of parasite patches. Set (a) visualizes a sample of P. falciparum
parasites and set (b) visualizes a sample of P. vivax parasites.

https://data.lhncbc.nlm.nih.gov/public/Malaria/Thick_Smears_150/index.html
https://data.lhncbc.nlm.nih.gov/public/Malaria/NIH-NLM-ThickBloodSmearsPV/NIH-NLM-ThickBloodSmearsPV.zip
https://data.lhncbc.nlm.nih.gov/public/Malaria/NIH-NLM-ThickBloodSmearsPV/NIH-NLM-ThickBloodSmearsPV.zip
https://data.lhncbc.nlm.nih.gov/public/Malaria/NIH-NLM-ThickBloodSmearsU/NIH-NLM-ThickBloodSmearsU.zip
https://data.lhncbc.nlm.nih.gov/public/Malaria/NIH-NLM-ThickBloodSmearsU/NIH-NLM-ThickBloodSmearsU.zip
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(a) Parasite radii for both species (b) Images/patient for both species

(c) Parasites/image for both species (d) Parasites/patient for both species

Figure 2. Range comparison of our two parasite datasets in terms of parasite radius (a), number of images per patient (b),
number of parasites per image (c), and number of parasites per patient (d). The box plots display the boxes’ bottom, median,
and top edges for the 25th, 50th, and 75th percentiles, respectively. The outliers are plotted as individual points by a red
mark beyond the whiskers.

2.2. Methodology

We design PlasmodiumVF-Net in stages, and we perform a performance evaluation
to validate its effectiveness for each stage. Specifically, we design four pipelines starting
from a straightforward model based on Mask R-CNN detection, and add three other
classifiers to discriminate between P. vivax, P. falciparum, and uninfected patients. In this
section, we discuss adapting Mask R-CNN for detecting parasites in thick blood smear
microscopy. We present a benchmark evaluation for two-class patch classification between
P. vivax and P. falciparum. The benchmark is important to choose the best CNN network
classifier for our framework. Finally, we discuss the four pipelines that we develop until
we reach our final framework, PlasmodiumVF-Net. Our framework is based on several
flags, counters, and scores to compute the image and patient-level decisions. Table 2 shows
these variables. The four pipelines are visualized in Figure 3. Figure 4 depicts the flowchart
of the complete framework.
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Figure 3. Visualization of our pipelines. The flowchart for PlasmodiumVF-Net is shown in Figure 4.
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Table 2. The definitions of all variables used in this paper.

Variable Definition

PV_U_ResNet50 ResNet50 classifier is trained to classify patches as either P. vivax or uninfected

PF_U_ResNet50 ResNet50 classifier is trained to classify patches as either P. falciparum or uninfected

PV This flag is set if more than one P. vivax parasite is still detected after all false positives
are filtered out by the PV_U_ResNet50 classifier

PF This flag is set if more than one P. falciparum parasite is still detected after all false positives
are filtered out by the PF_U_ResNet50 classifier

VF_ResNet50 ResNet50 classifier is trained to classify patches as either P. falciparum or P. vivax

Avg_PV Sum of all probabilities for detected P. vivax patches divided by the number of patches
detected for a single image

Avg_PF Sum of all probabilities for detected P. falciparum patches divided by the number of patches
detected for a single image

TotalPV Total number of detected P. vivax patches for all images of a single patient

TotalPF Total number of detected P. falciparum patches for all images of a single patient

Sum_U Total number of uninfected images

U_patients_score Total number of uninfected images divided by the total number of images for a single patient

PV_patient_score TotalPV/number of images for a single patient

PF_patient_score TotalPF/number of images for a single patient
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Figure 4. Flowchart for PlasmodiumVF-Net.
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2.2.1. Adapting Mask R-CNN for Parasite Detection

Object detection plays a significant role in many applications, ranging from mov-
ing object tracking to detecting organs in biomedical images. Recently, several powerful
networks for delineating objects have been introduced in the literature, such as Faster
R-CNN [30] which has been developed as a successor of two well-known region-based
convolutional neural networks, R-CNN [31] and Fast-R-CNN [32]. YOLO (You Only Look
Once) [33] is another fast and accurate object detection network that is grid-based rather
than region-based. Each of these networks provides a bounding box around the object that
includes some background pixels. Instance segmentation is detection that covers object pix-
els only. Mask R-CNN [34] is one of the state-of-the-art networks in instance segmentation
and is extremely powerful for small objects and biomedical applications [35–40].

Mask R-CNN consists of several modules: (1) Backbone: We use a residual network
with a 50-layer ResNet50 [41] as a convolutional neural network (CNN) for a feature
extraction. (2) Region Proposal Network (RPN): to obtain region proposals with different
scales and ratios to generate anchors. (3) Multi-class classifier to decide whether each region
of interest (ROI) contains an object or not, and a regressor to predict the bounding box
coordinates. (4) A fully connected network is added to achieve pixel-level segmentation
and generate object masks on pixel level, commonly known as instance segmentation.

We train a Mask R-CNN to detect P. falciparum and P. vivax patches. Specifically,
we perform two experiments: In the first experiment, we train a three-class classifier
(P. falciparum, P. vivax, Background (BG)). The second experiment involves training of two
two-class classifiers, P. falciparum vs. BG, and P. vivax vs. BG. We find using the two-class
classifiers to be more effective than the three-class classifier. The evaluation of Mask-R-CNN
detection is discussed in Section 3.2.

2.2.2. Patch-Level Two-Class Classification

We produce a benchmark for two-class patch classification (P. falciparum vs. P. vivax)
using four networks: GoogleNet [42], a CNN that is 22 layers deep with an input image
size of 224 × 224; SqueezeNet [43], a CNN with 18 layers and with an image input size
of 227 × 227; ResNet50 [41], a CNN that is 50 layers deep with an input image size of
224 × 224; and Inceptionv3 [44], which is 48 layers deep with an image input size of
299 × 299. We noticed a degradation in performance when we use deeper networks such
as DenseNet201 [45] and InceptionResNetV2 [46] with 201 and 164 layers, respectively.
We only include the best results in our benchmark. All of the networks are pre-trained
on the ImageNet [47] database to decrease the convergence time and have a rich feature
representation as a starting point to learn a new task. The training and testing details are
presented in Section 3.1, whereas the results, performance evaluation, and a discussion can
be found in Section 3.2.

2.2.3. Proposed PlasmodiumVF-Net Framework

We anticipate a single three-class trained Mask R-CNN model that can detect and
classify P. falciparum and P. vivax, and report image and patient-level decisions about the
infection. However, the challenges are the small parasite size, excessive staining artifacts,
and microscopy slide variations on patient level.

We create our framework design in stages. Pipeline 1, shown in the upper left part
of Figure 3, reports whether the image has P. falciparum or P. vivax parasites based on the
number and the score of the detected parasites using the three-class Mask R-CNN classifier.
We find that Mask R-CNN is not robust enough to produce a final patient-level decision;
however, it generates an excellent set of parasite candidates. The evaluation and other
details are discussed in Section 3.2. For Pipeline 2, shown in Figure 3 underneath Pipeline 1,
we add a ResNet50 classifier that discriminates between P. falciparum and P. vivax patches
after the Mask R-CNN detector. We report the image and patient-level decisions based
on probability aggregation for these patches. For Pipeline 3, shown in the right corner
of Figure 3, we replace the three-class Mask R-CNN classifier with two two-class Mask
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R-CNN classifiers to enhance the detection. This design enhances the overall accuracy, as
reported in Section 3.2. On the other hand, the design’s main drawback is that the ResNet50
classifier that we place after the Mask R-CNN detector is trained only to recognize the
patches infected by P. falciparum and P. vivax and gives an image and patient-level decision
based on probability aggregation of those patches. However, the large number of false
positives negatively affects the final decisions. To solve this issue, we can either retrain the
ResNet50 classifier to recognize three classes, P. falciparum, P. vivax, and uninfected patches,
or add two more classifiers after each Mask R-CNN model to filter out false positives. We
choose the second option because we noticed a wide variation between false positives for
both P. falciparum and P. vivax, and we want the classifier to focus on one task for more
accurate results. The full framework design, called PlasmodiumVF-Net, is shown in the
bottom part of Figure 3.

To clarify the procedure of computing an image and making a patient-level decision
based on probability aggregation and parasite count, we design the flowchart in Figure 4,
which shows all of the steps of our proposed PlasmodiumVF-Net framework. The flowchart
steps are described below, with all of the utilized variables listed in Table 2:

1. Read an image out of N images per patient.
2. Detect in parallel two sets of candidate patches using Mask R-CNN for both P. falci-

parum and P. vivax using the two two-class detectors. We apply here the two detectors
because we have no prior knowledge about the parasite species causing the infection
or whether the patient is uninfected.

3. Filter out false positives using two binary classifiers named PV_U_ResNet50 and
PF_U_ResNet50.

4. Set two flags, PV and PF, to indicate whether the framework detects more than one
parasite for P. vivax and P. falciparum, respectively.

5. Based on PV and PF, there are four possibilities:

(a) If both flags are zero, our proposed PlasmodiumVF-Net reports the image as
uninfected and increases the counter, Sum_U, of the number of uninfected
images by one.

(b) When PV = 0 and PF = 1, then PlasmodiumVF-Net reports that the image
contains only P. falciparum parasites.

(c) When PV = 1 and PF = 0, then PlasmodiumVF-Net reports that the image
contains only P. vivax parasites.

(d) If both flags are one, this means that there are candidate patches for both
P. falciparum and P. vivax. In this case, all of the candidates need to be tested by
the VF_ResNet50 classifier. After testing all the patches, the prediction proba-
bilities are aggregated. The averages, represented by Avg_PV and Avg_PF, are
computed by dividing the aggregated probabilities by the number of patches.
VF_ResNet50 classifies patches as P. vivax if they have probabilities of less than
0.5 and as P. falciparum if their probabilities are higher than 0.5. Consequently,
if Avg_PV is less than Avg_PF, then the image is considered to contain P. vivax;
otherwise, P. falciparum.

6. At this point, we have an image-level decision, and PlasmodiumVF-Net needs to
check some parameters and conditions to produce a patient-level decision. TotalPV
and TotalPF accumulate the total number of patches when PlasmodiumVF-Net found
that the image is infected by P. vivax or P. falciparum, respectively.

7. If all N images are processed, go to Step 8, otherwise return to Step 1 to process a new
image from the current patient.

8. If the PlasmodiumVF-Net found that more than half of the images of the current
patient are uninfected based on U_patients_score, which is calculated by dividing the
total number of uninfected images by N, then it considers the patient as uninfected;
otherwise, it proceeds to the final step.

9. Calculate the PF_patient_score and PV_patient_score by dividing the total number of
detected patches, represented by TotalPF and TotalPV, by N. The PlasmodiumVF-Net
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decides that the patient is infected by P. falciparum parasites if the PF_patient_score is
higher; otherwise, the patient is considered to be infected by P. vivax parasites.

The flowchart steps are repeated for every patient in the dataset to determine the
evaluation performance for the whole dataset. This flowchart can give researchers a
strategy to determine image and patient-level decisions for different biomedical problems.

3. Results and Discussion
3.1. Experimental Network Settings

In this section, we explain the cross-validation experiments and review the parameters
used to train our networks.

Mask R-CNN: We perform a five-fold cross-validation on patient-level. For training
the Mask R-CNN, we use the P. falciparum and P. vivax dataset, each containing 150 patients.
We divide each dataset into five sets and train four sets (120 patients) for each experiment
and use one set (30 patients) for testing. Out of the 120 patients used for training, 10 patients
are used for the validation. For each experiment, the number of images is balanced to
obtain unbiased classifiers. For each experiment (fold), the number of images used for
training ranges between 1400 and 1485 for P. falciparum, and between 2394 and 2420 for
P. vivax.

Although the number of P. vivax images is higher than the number of P. falciparum
images, our P. falciparum patients have a higher average infection rate, and therefore
provide more patches for training. We train Mask R-CNN with a momentum weight
of 0.9, a learning rate of 0.001, and 40 epochs. The intersection over union (IoU) for
positive anchors (proposals) is greater than 0.7 and less than 0.3 for negative anchors.
The network’s weights are initialized with transfer learning of ImageNet weights. Online
augmentation (flipping, affine transformation, and Gaussian blur) is used to augment and
increase patches for the training stage. Performance evaluation is shown in Table 3 and
discussed in Section 3.2.

CNN network benchmark and VF_ResNet50: This benchmark, see Table 4, is used
to choose the best CNN classifier that can classify P. falciparum and P. vivax patches. All of
the networks (GoogleNet, SqueezeNet, ResNet50, and Inceptionv3) are trained based on
patches extracted from the input images using parasite annotations. The training follows
the five-fold cross-validation scheme explained earlier in this section. Figure 5 displays
three distribution graphs for training and testing of the five folds. Graph (a) shows that the
original training data is unbalanced, graph (b) shows the data after we balanced it for each
fold by removing patches from the P.falciparum dataset, and graph (c) shows the number
of patches for testing. For all of the CNN networks, we use transfer learning based on the
pre-trained network of ImageNet as a starting point to take advantage of the early layers
with rich low-level features. It is also faster to converge than to learn the network from
scratch. To do this, we need to replace the last two layers responsible for class probabilities
and computing loss. We retrain and fine-tune the networks to learn a new task based on
the new dataset. In addition, we perform an online augmentation using scaling, translation,
and reflection. We train the networks for 15 epochs with an initial learning rate of 0.0003.
The benchmark shows that ResNet50 is the best; we call this trained model VF_ResNet50,
as in Table 2.

PF_U_ResNet50 and PV_U_ResNet50: We utilize ResNet50 to train two new clas-
sifiers to filter out false positives resulting from the Mask R-CNN detection. In these
experiments, we need parasite patches and uninfected patches. We collect all of the false
positives from the Mask R-CNN detection to gather uninfected patches rather than collect
random uninfected patches that may not feature a stain. Mask R-CNN’s false positives are
excellent candidates with staining colors that confuse the Mask R-CNN since most of them
are noise or staining artifacts. The two classifiers (PF_U_ResNet50 and PV_U_ResNet50)
need to learn that those patches are false positives and need to be eliminated. The training
also follows the same patient-level cross-validation discussed above.
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Table 3. Performance evaluation of Mask R-CNN for detecting P. vivax and P. falciparum parasites in thick smear
microscopy images.

P. vivax P. falciparum

Detection Rate Using
a Three-Class

Classifier

Detection Rate Using
a Two-Class

Classifier

Detection Rate Using
a Three-Class

Classifier

Detection Rate Using
a Two-Class

Classifier

Fold1 85.58 92.94 61.34 83.76

Fold2 82.04 90.60 60.77 86.83

Fold3 88.41 96.70 67.41 87.45

Fold4 89.81 96.22 73.15 90.02

Fold5 88.93 93.68 69.89 90.87

Avg. 86.95 94.03 66.51 87.79

(a) (b) (c)

Figure 5. Training and testing statistics for all CNN networks described in Section “Experimental network settings” that
classify patches as either P. falciparum or P. vivax with five-fold cross-validation on patient-level. Subfigure (a) shows the
statistics for the training data, subfigure (b) shows the actual data that has been used for training after balancing the number
of P. falciparum and P.vivax parasites in each fold, and subfigure (c) shows the statistics for the testing data.

Table 4. Confusion matrices for patch-based two-class classification, P. falciparum vs. P. vivax, using
different networks. Each matrix is the summation of five-fold cross-validation on patient-level. Gray
represents target values, whereas yellow represents predicted values. The reported accuracy, written
in each table’s caption, is the ratio of the sum of diagonal values over the total number of samples.

(a) GoogleNet Classification Experiments with Average Accuracy Equal to 99.15% [42].
P. falciparum P. vivax

P. falciparum 84,961 1087
P. vivax 0 41,955

(b) SqueezeNet Classification Experiments with Average Accuracy Equal to 99.28% [43].
P. falciparum P. vivax

P. falciparum 84,961 912
P. vivax 0 42,130

(c) ResNet50 Classification Experiments with Average Accuracy Equal to 99.98% [41].
P. falciparum P. vivax

P. falciparum 84,961 19
P. vivax 0 43,023

(d) InceptionV3 Classification Experiments with Average Accuracy Equal to 96.76% [44].
P. falciparum P. vivax

P. falciparum 84,961 4141
P. vivax 0 38,901
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3.2. Quantitative Performance Evaluation and Discussion

This section presents the performance evaluation for each pipeline.
(A) Pipeline 1: We begin our experiments with Pipeline 1 based on Mask R-CNN

only. We expected a Mask R-CNN model that can detect whether an image is infected
or uninfected and differentiate between P. vivax and P. falciparum if the image contains
parasites; however, that was not the case after a vast number of trials and parameter tuning.
Nevertheless, the model produces an excellent set of parasite candidates. We perform
two experiments: First, we train a three-class classifier to detect P. vivax, P. falciparum,
and Background (BG). Second, we train two two-class classifiers; one classifier detects
P. vivax vs. BG and the other one detects P. falciparum vs. BG. We found that training
two two-class classifiers is more efficient and produces a better performance than a single
three-class classifier.

We show the Mask R-CNN detection results in Table 3. The performance evaluation
for Mask R-CNN detection results follows the steps discussed in the evaluation section of
Kassim et al. [12]. It is noticeable that we achieve a high sensitivity that reaches about 94%
for P. vivax and 88% for P. falciparum using the two-class classifiers. However, Mask R-CNN
produces many false positives. These false positives are regions with an appearance similar
to parasites due to staining artifacts (non-parasite BG components absorbing the stain),
non-uniform illumination, and contrast variations. See Figure 6 for a visualization of the
detection results. Green circles represent true positives and red circles represent false
positives. The first row of Figure 6 shows P. falciparum, while the second row shows P. vivax,
for different patients. The figure illustrates the color, texture, and illumination variations on
patient-level. Moreover, the density of parasites (infection rate) detected by Mask-RCNN
differs. For example, subfigure (a) has no false positives and several accurate detections.
However, the recall is only 0.5, whereas subfigure (b) has a recall of one with only three
parasites and the remaining detections being false positives.

For Pipeline 1 with Mask R-CNN only, we only count the number of detections and
compute the image and patient-level evaluations for species identification by aggregating
this count. In addition, we consider the highest aggregated probability score if the number
of detected patches in an image or patient are the same for the two species. The performance
is low, 68.4% on image level and 78.7% on patient level, as shown in Table 5a,b, respectively.

(B) Pipeline 2: We add a classifier to classify all of the patches resulting from Mask
R-CNN detection as either P. falciparum or P. vivax. To do so, we choose the best classifier
based on our benchmark, which is ResNet50, aggregate all of the probabilities resulting
from ResNet50, and average them to compute image and patient-level decisions. Pipeline
2 increases the performance to 77.8% on image level and to 83% on patient level, see
Table 5c,d.

(C) Pipeline 3: We replace the three-class Mask R-CNN detector with two parallel
binary detectors to strengthen the detection part and let each detector focus on one type
of parasite, P. falciparum or P. vivax. This increases the overall accuracy to 83.5% on image
level and to 91% on patient level, see Table 5e,f.

(D) PlasmodiumVF-Net: After strengthening the detection part to produce the best
set of candidates, many false positives still affect the final decision because ResNet50 is
only trained to classify patches as P. falciparum or P. vivax. In other words, if the patch is not
a parasite, the classifier produces an arbitrary probability score for this patch that affects
the overall image and patient-level decision. For this reason, we filter out the false positives
by adding one classifier after each Mask R-CNN detector. This process increases the overall
accuracy on image and patient level to 90.8% and 96.7%, respectively, see Table 5g,h.
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Table 5. Confusion matrices for image and patient-level of our four pipelines using the P. falciparum
and the P. vivax dataset. Each matrix is the summation of five-fold cross-validation on patient-level.
Gray represents actual values, whereas yellow represents predicted values. The accuracy for each
confusion matrix is mentioned in the caption of each subfigure, measured as the ratio between
the sum of the diagonal elements over the total number of images (on image level) or patients (on
patient level).

(a) Pipeline 1, Image-Level Identification Results with Accuracy = 68.4%
P. falciparum P. vivax

P. falciparum 1245 952
P. vivax 573 2061

Sum of images 1818 3013

(b) Pipeline 1, Patient-Level Identification Results with Accuracy = 78.7%
P. falciparum P. vivax

P. falciparum 131 45
P. vivax 19 105

Sum of patients 150 150

(c) Pipeline 2, Image-Level Identification Results with Accuracy = 77.8%
P. falciparum P. vivax

P. falciparum 1700 955
P. vivax 118 2058

Sum of images 1818 3013

(d) Pipeline 2, Patient-Level Identification Results with Accuracy = 83%
P. falciparum P. vivax

P. falciparum 141 42
P. vivax 9 108

Sum of patients 150 150

(e) Pipeline 3, Image-Level Identification Results with Accuracy = 83.5%
P. falciparum P. vivax

P. falciparum 1675 653
P. vivax 143 2360

Sum of images 1818 3013

(f) Pipeline 3, Patient-Level Identification Results with Accuracy = 91%
P. falciparum P. vivax

P. falciparum 148 25
P. vivax 2 125

Sum of patients 150 150

(g) PlasmodiumVF-Net, Image-Level Identification Results
with Accuracy = 90.8%

P. falciparum P. vivax
P. falciparum 1756 375

P. vivax 52 2630
Sum of images 1808 3005

(h) PlasmodiumVF-Net, Patient-Level Identification Results
with Accuracy = 96.7%

P. falciparum P. vivax
P. falciparum 148 8

P. vivax 2 142
Sum of patients 150 150

By adding the additional two classifiers, PlasmodiumVF-Net can now decide whether
the image or patient is uninfected or infected. This decision is made after filtering the
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false positive patches. If all of the patches are filtered out, then the image is considered to
be uninfected, meaning it contains no parasites. However, this condition is too stringent.
The pipeline may still detect one or two parasites even for an uninfected image. We
therefore test our pipeline for an additional 50 uninfected patients, with 1141 images that
have not been used in the training process. We re-evaluate the three datasets together,
and we consider the image to be uninfected when it has less than two parasites (either
no parasite or only one parasite); Figure 7 demonstrates why we choose this threshold.
Table 6 presents the results. The overall accuracy, ratio of the sum of diagonal values
over the total number of samples, is 83.9% on image level and 92.3% on patient level. It
is also noticeable that there are more P. falciparum images being classified as uninfected
compared to P. vivax images. P. falciparum parasites are harder to detect than P. vivax due
to their smaller size and similarity to uninfected regions. Figure 7 shows a histogram of
PlasmodiumVF-Net responses on patch level. The y-coordinate represents the number of
images with x parasites as specified by the x-coordinate. PlasmodiumVF-Net responds
strongly when detecting parasites in infected patients; Figure 7A,B show the histogram
of the detected patches, while it shows a faint response, see Figure 7C, when tested on
uninfected patients. This confirms the effectiveness of our framework. For normal patients,
histogram bin 0 and 1 are high (more than 900 entries), meaning for most of the 1141 images
PlasmodiumVF-Net generates either zero or only one false positive parasite. This is the
reason why we choose two parasites as our threshold to determine whether the image is
taken from an uninfected patient or not.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Mask R-CNN parasite detection in eight different patients—four images from different patients (top row) infected
with P. falciparum and another four from different patients (bottom row) infected with P. vivax. The figure shows how the
images vary in color and infection rate. Green circles are true positives, while red circles are false positives. We draw the
circles larger than the actual parasites for better visualization. Rec and Pre mean recall and precision. (a) P. falciparum
parasite detection with Pre = 100% and Rec = 50%. (b) P. falciparum parasite detection with Pre = 10% and Rec = 100%.
(c) P. falciparum parasite detection with Pre = 100% and Rec = 10%. (d) P. falciparum parasite detection with Pre = 50% and
Rec = 50%. (e) P. vivax parasite detection with Pre = 50% and Rec = 80%. (f) P. vivax parasite detection with Pre = 10% and
Rec = 80%. (g) P. vivax parasite detection with Pre = 60% and Rec = 90%. (h) P. vivax parasite detection with Pre = 50% and
Rec = 80%.
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Figure 7. This figure compares the response of PlasmodiumVF-Net for the P. falciparum, P. vivax, and uninfected patient
datasets. (A) Subfigure A shows a histogram of parasite detection on image level for P. falciparum, (B) Subfigure B shows a
histogram of parasite detection on image level for P. vivax, and (C) Subfigure C shows a histogram of both P. falciparum
and P. vivax parasite detection on image level for uninfected patients. From the histograms of Subfigure A and B, it is
noticeable that our framework is responding well and identifies the existing parasites in the infected patients, while in
Subfigure C, PlasmodiumVF-Net detects only a small number of false-positive parasites for uninfected patients, which
shows the effectiveness of our proposed pipeline.

Table 6. Confusion matrices for image-level and patient-level three-class classification for
PlasmodiumVF-Net. Each matrix is the summation of five-fold cross-validation on patient level.
Gray represents actual values, whereas yellow represents predicted values. The accuracy is reported
in bold in the caption of each table.

(a) Summation of Confusion Matrices for Five-Fold Cross-Validation of
PlasmodiumVF-Net with Average Accuracy Equal to 83.9% on Image Level

P. falciparum P. vivax Uninfected
P. falciparum 1714 337 317

P. vivax 36 2537 66
Uninfected 68 139 758

Sum of Images 1818 3013 1141

(b) Summation of Confusion Matrices for Five-Fold Cross-Validation of
PlasmodiumVF-Net with Average Accuracy Equal to 92.3% on Patient Level

P. falciparum P. vivax Uninfected
P. falciparum 145 8 12

P. vivax 2 141 1
Uninfected 3 1 37

Sum of Patients 150 150 50

The processing time for one image is around 6–8 s, which includes making the final
decision on whether the image is infected and detecting potential parasites. The processing
time for one patient is proportional to the number of images acquired for the patient.

We designed our framework so that it can report whether a patient is uninfected or
infected and whether an infection is caused by either P. falciparum or P. vivax. In the rare
case of a mixed infection, our system would make a binary decision and settle for either
P. falciparum or P. vivax, depending on the frequency of each species and probability scores.
This is a limitation, which we could easily amend; however, we decided in favor of a binary
output for the infected patients because our training and test data contained no mixed
infections.

4. Conclusions

In this work, we propose four pipelines to compute image- and patient-level infection
decisions for Plasmodium parasites. We process challenging thick smear microscopic
images from patients infected by P. falciparum and P. vivax parasites, and from uninfected
patients. Our proposed framework, named PlasmodiumVF-Net, reports an infected patient
based on patch-level probability aggregation and parasite counting. The framework reaches
around 92% overall accuracy on patient level when tested on 350 patients with 5972 images.
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For future research, we are interested in testing the framework with data from other malaria-
endemic regions to analyze whether the framework can handle images and patients from
different sources, and in integrating the framework into a smartphone application, such as
NLM Malaria Screener [26,48].
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